Electrode
Reduction and Oxidation Potential
Corrosion,
the degradation of metals as a result of electrochemical activity,
requires an anode and a cathode in order to occur.The anode is
the metal or site with a higher potential to oxidize (lose electrons)
while the cathode is the metal or site with a higher
potential for reduction (gaining of electrons). In other words, the
cathode has a lower potential to oxidize than the anode.
The
measure of a material to oxidize or lose electrons is known as its 'oxidation
potential.' A difference between the oxidation potentials of two metals or
sites can lead to corrosion that will consume the metal or site that is more
anodic. This is assuming that the two other things needed for corrosion
are also present: electrical connection between the two metals
or sites with oxidation potential difference and the presence of an electrolyte (such
as water) to conduct ions between them.
Table 1
presents the standard oxidation potential values of various elements. The
values of the oxidation potential in this table are used relative to
each other, to determine the tendency of a metal to become a cathode (or anode)
with respect to another metal, for corrosion to occur.
Table
1. Standard Electrode Reduction and Oxidation Potential Values
|
|||
Reduction Reaction
|
Eo (V)
|
Oxidation Reaction
|
Eo (V)
|
Li+ + e- → Li
|
-3.04
|
Li → Li+ + e-
|
3.04
|
K+ + e- → K
|
-2.92
|
K → K+ + e-
|
2.92
|
Ba2+ + 2e- → Ba
|
-2.90
|
Ba → Ba2+ + 2e-
|
2.90
|
Ca2+ + 2e- → Ca
|
-2.87
|
Ca → Ca2+ + 2e-
|
2.87
|
Na+ + e- → Na
|
-2.71
|
Na → Na+ + e-
|
2.71
|
Mg2+ + 2e- → Mg
|
-2.37
|
Mg → Mg2+ + 2e-
|
2.37
|
Al3+ + 3e- → Al
|
-1.66
|
Al → Al3+ + 3e-
|
1.66
|
Mn2+ + 2e- → Mn
|
-1.18
|
Mn → Mn2+ + 2e-
|
1.18
|
2H2O + 2e- → H2 + 2
OH-
|
-0.83
|
H2 + 2 OH- → 2H2O +
2e-
|
0.83
|
Zn2+ + 2e- → Zn
|
-0.76
|
Zn → Zn2+ + 2e-
|
0.76
|
Cr2+ + 2e- → Cr
|
-0.74
|
Cr → Cr2+ + 2e-
|
0.74
|
Fe2+ + 2e- → Fe
|
-0.44
|
Fe → Fe2+ + 2e-
|
0.44
|
Cr3+ + 3e- → Cr
|
-0.41
|
Cr → Cr3+ + 3e-
|
0.41
|
Cd2+ + 2e- → Cd
|
-0.40
|
Cd → Cd2+ + 2e-
|
0.40
|
Co2+ + 2e- → Co
|
-0.28
|
Co → Co2+ + 2e-
|
0.28
|
Ni2+ + 2e- → Ni
|
-0.25
|
Ni → Ni2+ + 2e-
|
0.25
|
Sn2+ + 2e- → Sn
|
-0.14
|
Sn → Sn2+ + 2e-
|
0.14
|
Pb2+ + 2e- → Pb
|
-0.13
|
Pb → Pb2+ + 2e-
|
0.13
|
Fe3+ + 3e- → Fe
|
-0.04
|
Fe → Fe3+ + 3e-
|
0.04
|
Arbitrary Neutral : H2
|
|||
Reduction Reaction
|
Eo (V)
|
Oxidation Reaction
|
Eo (V)
|
2H+ + 2e- → H2
|
0.00
|
H2 → 2H+ + 2e-
|
0.00
|
Cathodic -
exhibits greater tendency to gain electrons
|
|||
Reduction Reaction
|
Eo (V)
|
Oxidation Reaction
|
Eo (V)
|
S + 2H+ + 2e- → H2S
|
0.14
|
H2S → S + 2H+ + 2e-
|
-0.14
|
Sn4+ + 2e- → Sn2+
|
0.15
|
Sn2+ → Sn4+ + 2e-
|
-0.15
|
Cu2+ + e- → Cu+
|
0.16
|
Cu+ → Cu2+ + e-
|
-0.16
|
SO42+ + 4H+ + 2e- →
SO2 + 2H2O
|
0.17
|
SO2 + 2H2O → SO42+ +
4H+ + 2e-
|
-0.17
|
AgCl + e- → Ag + Cl-
|
0.22
|
Ag + Cl- → AgCl + e-
|
-0.22
|
Cu2+ + 2e- → Cu
|
0.34
|
Cu → Cu2+ + 2e-
|
-0.34
|
ClO3- + H2O + 2e- →
ClO2- + 2OH-
|
0.35
|
ClO2- + 2OH- → ClO3- +
H2O + 2e-
|
-0.35
|
2H2O + O2 + 4e- →
4OH-
|
0.40
|
4OH- → 2H2O + O2 +
4e-
|
-0.40
|
Cu+ + e- → Cu
|
0.52
|
Cu → Cu+ + e-
|
-0.52
|
I2 + 2e- → 2I-
|
0.54
|
2I- → I2 + 2e-
|
-0.54
|
O2 + 2H+ + 2e- →
H2O2
|
0.68
|
H2O2 → O2 + 2H+ +
2e-
|
-0.68
|
Fe3+ + e- → Fe2+
|
0.77
|
Fe2+ → Fe3+ + e-
|
-0.77
|
NO3- + 2H+ + e- →
NO2 + H2O
|
0.78
|
NO2 + H2O → NO3- +
2H+ + e-
|
-0.78
|
Hg2+ + 2e- → Hg
|
0.78
|
Hg → Hg2+ + 2e-
|
-0.78
|
Ag+ + e- → Ag
|
0.80
|
Ag → Ag+ + e-
|
-0.80
|
NO3- + 4H+ +3 e- →
NO + 2H2O
|
0.96
|
NO + 2H2O → NO3- + 4H+ +3
e-
|
-0.96
|
Br2 + 2e- → 2Br-
|
1.06
|
2Br- → Br2 + 2e-
|
-1.06
|
O2 + 4H+ + 4e- →
2H2O
|
1.23
|
2H2O → O2 + 4H+ +
4e-
|
-1.23
|
MnO2 + 4H+ + 2e- →
Mn2+ + 2H2O
|
1.28
|
Mn2+ + 2H2O → MnO2 +
4H+ + 2e-
|
-1.28
|
Cr2O72- + 14H+ +
6e- → 2Cr3+ + 7H2O
|
1.33
|
2Cr3+ + 7H2O → Cr2O72- +
14H+ + 6e-
|
-1.33
|
Cl2 + 2e- → 2Cl-
|
1.36
|
2Cl- → Cl2 + 2e-
|
-1.36
|
Ce4+ + e- → Ce3+
|
1.44
|
Ce3+ → Ce4+ + e-
|
-1.44
|
Au3+ + 3e- → Au
|
1.50
|
Au → Au3+ + 3e-
|
-1.50
|
MnO4- + 8H+ + 5e- →
Mn2+ + 4H2O
|
1.52
|
Mn2+ + 4H2O → MnO4- +
8H+ + 5e-
|
-1.52
|
H2O2 + 2H+ + 2e- →
2H2O
|
1.78
|
2H2O → H2O2 + 2H++
2e-
|
-1.78
|
Co3+ + e- → Co2+
|
1.82
|
Co2+ → Co3+ + e-
|
-1.82
|
S2O82- + 2e- →
2SO42-
|
2.01
|
2SO42- → S2O82- +
2e-
|
-2.01
|
O3 + 2H+ + 2e- →
O2 + H2O
|
2.07
|
O2 + H2O → O3 + 2H+ +
2e-
|
-2.07
|
F2 + 2e- → 2F-
|
2.87
|
2F- → F2 + 2e-
|
-2.87
|
For example, if tin is deposited over copper, then there
is a possibility for corrosion to occur. From Table 1, copper has a lower
oxidation potential (-0.34 V) than tin (0.14 V), so Cu can serve as the cathode
while Sn can serve as the anode, creating the potential difference necessary
for corrosion to occur.
All information in this blog post is taken from the website below and is only here as a forms of information to refer to.
Siliconfareast.com. 2013. Electrode Reduction and Oxidation Potential Values. [online] Available at: http://www.siliconfareast.com/ox_potential.htm [Accessed: 4 Sep 2013].
No comments:
Post a Comment